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Received 10 October 1989 

Abstract. A generalised Luttinger model is proposed and studied in the spinless and spin- 
dependent cases. The solution of the back-scattering and Umklapp scattering problems are 
obtained using a new strategy. For the standard Luttinger model the results already known 
are obtained again. 

1. Introduction 

1 . I .  The general framework 

The bifermionic model of the one-dimensional electron gas, proposed by Luttinger 
(1963) and exactly solved by Mattis and Lieb (1965), is an exactly soluble model, whose 
properties are extensively studied and well understood (see, e.g., Sblyom 1979, Emery 
1979, Bohr 1981). In the simplest variant, that of the spinless fermions, the model is 
described by the Hamiltonian 

where H o  is the kinetic part given by 
H L M  = Ho + HI (1.1) 

(1.2) Ho = loL dx[v:(x)PvC,,(x) - v;(x)Pv2(X)l 

H ,  = joL dx dY v:@>v'1(x)V(x  - Y)v;(Y)v2(Y). 

and HI is the interaction part, which describes a forward-scattering process: 

(1.3) 

The fermionic field operator may be written as 
1 

(x) = - ]c. exp(ikx) alk.  (1.4) 
* k  

The Fourier components of the particle number density operator 
1 

N,(x) = v; ( X > V , ( X >  = L x P,(k) exp( -ikx) (1.5) 
k 

are 

= ]c. a T p + k a / . p *  (1.6) 
P 

These momentum space density operators p, (k)  satisfy bosonic commutation 
relations: 
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and the whole Hamiltonian may be expressed in bosonic terms: 

The Hamiltonian (1 .S )  may be diagonalised by a Mattis-Lieb (1965) transformation 
(MLT), which is a Bogoliubov transformation of the bosonic operators 

1.2. The limitations of the M L T  

In the form (1.3), the model leaves out an important interaction, the back-scattering 
(BS) process, which, in this simple case of the spinless fermions, may be written as 

(1.10) 

(HC means the Hermitian conjugated part) and may be interpreted here as an impurity 
scattering. The MLT modifies in a complicated manner the ql qi term and, as a conse- 
quence, the model characterised by the Hamiltonian 

H = H L M  + HBS (1.11) 

is not exactly soluble. The same difficulty persists, evidently, in the spin-dependent 
problem, where the MLT modifies the BS and Umklapp scattering (us) terms in a com- 
plicated manner. 

1.3. Problem 

Does a ‘simple’ modification of the Hamiltonian (1.11) exist which admits an exact 
solution? 

1.4. Answer 

The answer is the following: if the bosonised part of the model has an interaction term 
of the form 

and ifthe coupling satisfies the relation 

pz = 2A(vF - A) 
then the transformation 

(1.12) 

(1.13) 
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(1.15) 

and leaves unchanged the BS term (1. lo), if y is given by the relation 
(1.16) 

The Hamiltonian which admits an exact solution is HGLM + HBS.  These questions were 
introduced and discussed previously (Birsan 1985). 

1.5. The spin-dependent case 

We shall define a spin-dependent Luttinger model, for which the small-momentum- 
transfer terms are a spin-dependent variant of (1.15) and the large-momentum-transfer 
terms are the standard ones. We shall prove that the transformation (1.14), used in 
conjunction with the MLT, allows us to obtain an exact solution of the model, if some 
restrictions are imposed on the couplings. This solution is similar to those obtained by 
Luther and Emery (1974) and by Emery et a1 (1975). 

y 2  = h/2(uF - A). 

2. A canonical transformation which leaves the back-scattering term unchanged 

As was demonstrated (Bsrsan 1985), the generalised Luttinger Hamiltonian (1.15) may 
be diagonalised by a transformation 3, defined by (1.14), which also has the property 
that it leaves unchanged the BS term (l.lO), if the following conditions are fulfilled: 

Equivalently, 

and 
p = 2Y(uF - A) 

y2 = A/2(u, - A )  
Therefore, 

0 < A < U F .  

It is easy to see that the above restrictions allow the existence of two solutions: 

which reflects the freedom of changing y-+ - y in (1.14), with the modulus fixed by 
(2.3). In both cases, 

y = * d/i1/2(uF - A) sgn y = sgn p 

p 2  = 2h(vF - h) .  (2.5) 
If we prefer to write the complex couplings as 

A + ip = Aexp(i0) 
the conditions (2.2) and (2.3) become 

A = (2uF cos e ) / ( i  + cos2 e )  cos e > 0. 
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This formula also includes the condition (2.4), because 

Geometrically, the constraint (2.5), written in the form 
8 < )3. S A  G A,,, = vF .  

()3. - uF/2)2/(uF/2)2 f p 2 / ( U F / ~ ) *  = 1 (2.8) 
represents an ellipse in the (A, p )  plane, having its centre at (uF/2,0) and the semiaxes 

uF/d2 (figure 1). 
Such a transformation can diagonalise a Hamiltonian similar to (1.11): 

= HGLM (A, + HBS (2.9) 

if the couplings satisfy the restriction (2.5). Indeed, the 3 transformation leaves 
unchanged HBs and diagonalises HGLM; this last term can be written as a bilinear form 
in the fermionic operators. So, (2.9) becomes a quadratic form, the diagonalisation of 
which is well known. 

3. A more general canonical transformation 

It is clear that it is impossible to pass from the 5 transformation to the MLT or vice versa, 
choosing a particular value of the parameters involved in their expressions. 

3.1. Problem 

Does a more general transformation, containing 9 and MLT as particular cases, exist? 
Let us remember that the MLT is generated by the Hermitian operator 

with q(p) a real and even function, and that the Y transformation is generated by 
(BBrsan 1985) 

2Jd 
ST =xzo [P :  ( - P ) P I ( - P )  + P i  ( P ~ ( P )  + P I  ( - P > P ~ ( P >  + P:  ( - P > P : ( P ) ~  (3.2) 

(the momentum dependence of cp(p), yp is relevant for convergence only; so it is often 
relaxed). 

3.2. Answer 

A ‘sufficiently general’ canonical transformation is that generated by the operator 

(3.3) 
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3.3. The action of the S(a, p) transformation upon the density operators 

The density operators 

P = exp[iS(a, P) lP  exp[-iS(a, 011 

01(-P> = a,P*(-P) + b,P:(P) 

P 2 ( P )  = b,P:(-P) + a,Pz(P)  

transformed by S(a, p) are given by 

where 

a, = cos d ,  - ia,[(sin d,)/d,] 

b, = - i[(sin d,)/d,]P,* 

d; = - p : p p .  
As a consequence of the canonicity of the transformation (3.3), 

lap 1’ - (6,I’ = 1. (3.10) 

3.5. The S(a, p) transformation can diagonalise the GLM 

Let us put 

a = /a1 exp(i8,) b = Ibl exp(iO6). (3.12) 

The off-diagonal term from (3.11) will disappear if 

la1 = l/dl - A 2  Ibl = A / -  (3.13) 

ea + eb = e - n (3.14) 

where A is defined by 

A = (1 - - ) / x  x = A/UF. (3.15) 

The restrictions (3.13) and (3.14) may be also written as 

/a1 = l/dl - A 2  b = - a*A exp(i8). (3.16) 
So the diagonalisation conditions determine the coefficients a and b up to a phase 
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I 
Figure 1. The ellipse characterised by equation 
(2.8), describing the connection between the 
couplings I ,  p ,  for which the S transformation 
(1.14) diagonalises the generalised Luttinger 
Hamiltonian. 

Figure 2. The phase diagram of the generalised 
Luttinger Hamiltonian. 

Oa or o b ;  this uncertainty is unimportant, because the computation of the physically 
interesting quantities does not require separate knowledge of 0, and O b .  Similarly, it is 
not important that we have not expressed cy and p-only a and b-as functions of 
potential. These formulae will be useful when we compute the correlation functions of 
the GLM with the bosonisation method. 

For large couplings, the diagonalisation conditions become meaningless (see (3.15)). 
This reflects the fact that the large-coupling regime cannot be connected to the free 
ground state by a unitary transformation. 

If S(a,  B )  diagonalises the GLM, i.e. if the values of the parameters cy and /3 are given 
by equations (3.7)-(3.10) and (3.13)-(3.16), the renormalised Fermi velocity is 

f i F  = U F  m. (3.17) 

At this stage, A and ,U (A and 0 )  are free of any constraint. 

3.6. Particular cases 

3.6.1. M L T ,  attractive case. In this case 

A < O  p = o  0 = n. 
If we choose 8, = 0, (3.14) implies that o b  = 0 and 

a = (1 - A*)-’’’ = cosh q 

b = A ( l  - A * ) - @  = sinh q 
q > o .  

3.6.2. MLT,  repulsive case. Here 

A > O  p = o  0 = 0  

and, choosing 0, = 0, (3.14) requires that o b  = -n and 

(3.18) 

(3.19) 

(3.20) 
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In both cases, 

or 

a = (1 - A2)-ll2 = cosh Q, 

b = -A(1 - A2)-1/2 = sinh Q, 
Q, < o .  

4821 

(3.21) 

tanh 2p, = - A / u F  (3.22) 

tanh Q, = -A sgn A (3.22’) 

which represent just the ML diagonalisation condition. So the MLT may be obtained from 
the general transformation as a particular case. 

3.6.3. The 9 transformation. Here, the phase and the strength of the potential (e and 
x )  are no longer independent. It is useful to consider 8 as a free variable, and x given by 
(2.7) and (3.15): 

x = ( A / ~ ~ )  [(2 COS e) / ( i  + cos2 e)] (3.23) 

In this case, from (2.3) and (3.15), 

y* = Cot2 e 
A = COS e > o 

and, from (1.14), 

a = 1 - iy = (l/sin e )  exp(-in/2) exp(i8) 

b = exp( -in/2) cot 8. 

(3.24) 

(3.25) 

So, 8, = 8 - n/2,  Ob = - n/2 and the general diagonalisation conditions (3.13) and 
(3.14) are also fulfilled in this particular case. 

4. Some useful particular transformations of H,, and HGLM 

where HGDM is given by (1.15) and 

f i F  = u F  cosh 2cp + sinh 2 q  

p = p. 

Here, Q, is free of any constraint. W is the vacuum renormalisation energy, which is 
unimportant in this context. 
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If we choose for Q, the value obtained by Luther and Emery (1974), 

exp Q, = 1/<2 tanh2q = - t 

we obtain 

i iF  = t(5uF - 3A) 

i t(-3uF + 5 A )  

(4.3) 

(4.4) 

p = p. 

(4.5) 

we obtain A = uF (where diagonalisation is not possible) or A = 0 (the free case). Of 
course, the Luttinger model cannot be diagonalised using a 3 transformation. 

5. The physical behaviour of the GLM 

In order to understand the physical behaviour of the GLM (1.15), let us compute its 
correlation functions at T = 0. We shall use the bosonisation method, in the version of 
Luther and Peschel(l974) and Mattis (1974). During the computation, a diagonalisation 
transformation is essentially used; specific Luttinger models require specific trans- 
formations (i.e. specific values of the coefficients a and b) ,  as will be indicated below in 
equations (5 .5)  and (5.6). A slight momentum dependence of the couplings (as 
exp( - ap)) was assumed. 
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G2(x, t) = - sgnt [exp(-ikFx)/2n] [c- a(t)]-1{[~-ia( t )][~+ia(t)]}-~b12 (5 .2)  

with the usual notation 

g = x - &t f = x + dFt. 

The exponent is 

1bI2 = A2/(1 - A * )  

(5.3) 

(5.4) 

independent of the phase of the potential. 
For the standard Luttinger model, diagonalisable by a MLT, 

lbI2 = sinh2 Q, = [l - V'-]/2Vl - (A/uF)' (5.5) 
the known result. 

with equation (3.24), we find that 
For the GLM, defined by (1.15) and (1.13), diagonalisable by the T transformation, 

lb12 = y2 = cot2 e (5.6) 

and the physical information is essentially the same as for the standard Luttinger model. 

5.2. The CDW and the sc correlation functions 

and for the pairing response, or superconducting (sc) function 

S(x, t) = (TVI (x, t)V2(X, t>V,: (0, 0 ) V :  (0,0>> 

C(x, t )  = [e~p(-2ik,x)/(2nn)~](a*/[~+in(t)][~ -in(t)]}' 

(5 .8)  

(5.9) 

we obtain 

S(x, t )  = (2nn) - 2 { ~ 2 / [ E  + i n(t)] [ 5 - in(  t)]}$ (5.10) 

where the exponents c and s are functions of the potential (of A and 6 )  through a and 
b ,  according to (3.13)-(3.16): 

c =  l ~ 1 ~ + l b ~ ~ + u b + a * b *  = (1-2Acos8+A2) / (1-A2)  (5.11) 

S =  laI2+lb1*-ab-a*b* (1+2A COS 8+A2) / (1-A2) .  (5.12) 

Their Fourier transforms behave for q - w - 0 as 

C(w) - w2c-* S ( 0 )  - ob-2. 

The CDW function becomes singular if 

A - COS 8 < 0 

or, equivalently, 

(A - UF/2)2/(UF/2)2 + P 2 / / ( U F / ~ ) 2  < 
i.e. for the region bounded by the ellipse defined in section 2. 

(5.13) 

(5.14) 

(5.15) 
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The sc  function S ( w )  becomes singular if 
A + c o s e < o  

or, equivalently, if 

(A + uF/2)2/(uF/2)2 + p 2 / ( U F / ~ ) '  < 1 

(5.16) 

(5.17) 

which is the region bounded by an ellipse with its centre at (-uF/2, 0), symmetric with 
(2.8) with respect to the p axis (figure 2). 

In particular, for the Luttinger model ( p  = 0), we obtain that the CDW (sc) function 
is singular in the repulsive (attractive) case, as is well known (Fogedby 1976). 

So the GLM has the same states as the standard Luttinger model. The phase diagram 
of the GLM is drawn in figure 2. 

6. The spin-dependent case 

6.1. The model 

Let us consider the case in which the fermionic field operators are spin dependent: 

1 
= exp(iks) a,ks* (6.1) 

The density operators are defined by 

P,s(P) = a;k+p.sulks.  (6.2) 
k 

We shall again study a generalised spin-dependent Luttinger model, described by 
the Hamiltonian 

H = Ho f H21j + HZI + H B S  + H"s. (6.3) 
H ,  represents the kinetic part: 

HO = u F  { pa$salps + 2 P(a$salps - 1> 
S > P  >o S , P  <o 

The next two terms describe the small-momentum-transfer scattering processes 
(forward-scattering terms); let us define them by the expressions 

2n 
H2ll =t 22 Kg211 +ihZll)p~(k)p:,(-k)+Hc) g2/1 > h2/1 E (6.5) 

s:k>O 

2n 
HZ1 =- c [(gzi +ih2I)P:s(-k)P2:-s(k)+HCl g21,h21 E R .  (6.6) 

s;k>O 

The last two terms in (6.3) represent the large-momentum-transfer processes, the BS 
and us interactions; they have the standard form 

HBS = d x [ ~ ~ l ( x ) v ~ - ~ ( x ) v ~ - ~ ( x ) ~ ~ l ( x )  + HC1 (6.7) 

(6.8) 
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Some forward-scattering terms (H311, H 3 L  in Sblyom’s (1979) notation) were omitted 
because they do not contribute significantly to the physics of the system. 

So the generalised spin-dependent Luttinger model defined by (6.23) differs from 
the standard one in the fact that the forward-scattering couplings are complex; the whole 
Hamiltonian remains Hermitian. This model can be exactly solved, if some restrictive 
conditions are imposed on the couplings. The rest of this section will be devoted to 
finding this solution. 

6.2. The spinless operator formalism 

Let us introduce as usual the spinless boson operators: 

P, = (w” + P,-1) (6.9) 

0, = ( l / m P , I  - P , - J  (6.10) 

So the sum of the first three terms in (6.3) may be separated as usual into a ‘charge- 

(6.11) 

dependent’ and a ‘spin-dependent’ part: 

HO + H211 + HZL = HL + HL 

where 

(6.14) 

(6.15) 

6.3. The bosonisation scheme 

The large-momentum-transfer terms, HBS and H,, ((6.7) and (629, respectively) may 
be treated in the Luther-Emery (1974) way. For instance, we find that 

I4 :1 (xNz+- 1 @)I4 1 - 1 (x)v21 (x> 

= ( I / L ~ )  exp[~%:,(x>l e x p [ - f i ~ ~ ~ ( x > l  exp[- f iQXx> 
x exp[fiQ2,(x>l (6.16) 

with 

2n  exp[-(a/2)k+ (-1)jkxl 
ai(( - 1)’k). (6.17) 

k Qju(x> = - Z 
L k>O 

6.4. The Luther-Emery transformation effect 

If we apply to the Hamiltonian 

dx{exp[d/2Q:,(x)] e~p[-V%2~,(x)]  exp[-V%2,(x)] 
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x e x p [ ~ 5 ~ ~ , ( x > ]  + HC) (6.18) 

which contains all the spin degrees of freedom, a MLT transformation on o operators 
with the Luther-Emery value 

exp q = I/VT (6.19) 

we find that 

+ L l d x  [exp(2ikFx)q:(x)qz(x)+~c].  
2 n a  

(6.20) 

According to (4.4), the parameters entering (6.20) are 

U;, = i(5uF - 3Au) 

= +(-3uF + 5 A u )  (6.21) 

P ;  = P u .  

q l  and q2 are the fermionic field operators associated with the bosonic spin-density 
operators 

(6.22) 
q 1 ( x )  = (1/fi) exp(ikFx) exp[-Q :u(~>] exp[Q l ~ ( ~ > l  

q * ( x )  = ( 1 / m  exp(-ik+) exp[-Q2:u(x>l exp[Q*u(x)l. 

6.5. The 9 transformation effect 

Until now, the couplings in (6.20) which will diagonalise the bosonic term are free of 
any constraint. A 9 transformation applied to (6.20) will diagonalise the bosonic term 
and will leave the fermionic term unchanged if 

(6.23) Pk2 = 2kb(uFo - Ab). 

so , 

+ dx  [exp(2ikFx) q : ( x ) q 2 ( x )  + HC] (6.24) 
2na 

or 

where 

UFO = U;, - A& = 2(uF - A,). 

The c operators are the Fourier components of the q operators: 

(6.25) 

(6.26) 
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(6.27) 

The Hamiltonian (6.25) is identical with that obtained by Luther and Emery (1974) 
in their solution of the BS problem. The correlation functions and the phase diagram of 
this Hamiltonian are known (Luther and Emery 1974, Lee 1975). 

As a consequence of the restriction (6.23), the real part of the couplings must satisfy 
the constraint 

(6.28) 

A similar treatment can be applied to the ‘charge’ degrees of freedom part of the 
% O F  < 8211 - g21 < OF.  

Hamiltonian. 

6.6. Final remarks 

So the generalised Luttinger model can be completely solved, if some restrictions are 
imposed on the coupling constants. These are the following: the real part must satisfy 
the inequalities 

i u F  < g2ll < UF (6.29) 

- 4 U F  <g21 g u F  (6.30) 

and the imaginary parts are fixed by the conditions 

lhq t hZI I = (1/2VT) d 3 4 v F A ~  - 15(0F + A P , ) ~ .  (6.31) 

Specifically, the generalised spin-dependent Luttinger Hamiltonian (6.3) was trans- 
formedinto the sum of two bilinear Hamiltonians: one of these (equation (6.25)) collects 
the ‘spin degrees of freedom’; the other is its ‘charge’ analogue. The physical behaviour 
of the system described by these Hamiltonians is known (Emery 1979). 

7. Conclusions 

In this paper, two bifermionic models whose interaction parts contain large-momentum- 
transfer terms are proposed. It was proved that this model can be exactly solved; indeed, 
it can be reduced to a bilinear Hamiltonian, as in the Luther-Emery solution, if some 
restrictions are imposed on the couplings. These restrictions are less severe than that 
required to obtain the exact solutions of the BS and us problems (Luther and Emery 
1974, Emery et a1 1975). It is specific to these models that the couplings entering the 
small-momentum-transfer terms are complex. 

Do these results have more than a technical interest? One may wonder about 
the usefulness of a model with complex couplings. However, the Luttinger model is 
equivalent to a large number of other models; so the couplings are not necessarily the 
Fourier transforms of a direct-space (contact) potential. On the other hand, a number 
of one-dimensional Hamiltonians with complex ‘couplings’ have been examined in the 
literature (Black and Emery 1981, Voit and Schulz 1988, Martins 1988). We also hope 
that the physical relevance of our results can be better evaluated when renormalisation 
group calculations show which real models scale towards the Hamiltonians (2.9) and 
(6.3). 
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